Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Độ dài gang tay (Gang tay của bạn dài bao nhiêu?) Bài tập 16 trang 92 Toán 12 tập 2 - Kết nối tri thức: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: \(y = {x^3} - 3{x^2}\)...

Bài tập 16 trang 92 Toán 12 tập 2 - Kết nối tri thức: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: \(y = {x^3} - 3{x^2}\)...

Sử dụng kiến thức về sơ đồ khảo sát hàm số để khảo sát và vẽ đồ thị hàm số: 1. Trả lời Giải bài tập 16 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức - Bài tập ôn tập cuối năm . Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) \(y = {x^3} - 3{x^2}\);

Đề bài :

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

a) \(y = {x^3} - 3{x^2}\);

b) \(y = \frac{{2x + 1}}{{x + 2}}\);

c) \(y = \frac{{2{x^2} + x - 2}}{{x - 1}}\).

Hướng dẫn giải :

Sử dụng kiến thức về sơ đồ khảo sát hàm số để khảo sát và vẽ đồ thị hàm số:

1. Tìm tập xác định của hàm số.

2. Khảo sát sự biến thiên của hàm số:

+ Tính đạo hàm y’. Tìm các điểm tại đó y’ bằng 0 hoặc đạo hàm không tồn tại.

+ Xét dấu y’ để chỉ ra các khoảng đơn điệu của hàm số.

+ Tìm cực trị của hàm số.

+ Tìm các giới hạn tại vô cực, giới hạn vô cực. Chỉ ra các đường tiệm cận (nếu có) của đồ thị hàm số

+ Lập bảng biến thiên của hàm số.

3. Vẽ đồ thị của hàm số dựa vào bảng biến thiên.

Lời giải chi tiết :

a) 1. Tập xác định: \(D = \mathbb{R}\).

2. Sự biến thiên:

Ta có: \(y’ = 3{x^2} - 6x,y’ = 0 \Leftrightarrow x = 0\) hoặc \(x = 2\)

Trên khoảng \(\left( {0;2} \right)\), \(y’ 0\) nên hàm số đồng biến trên mỗi khoảng đó.

Hàm số đạt cực đại tại \(x = 0\), giá trị cực đại . Hàm số đạt cực tiểu tại \(x = 2\), giá trị cực tiểu \({y_{CT}} = - 4\).

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {{x^3} - 3x} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^3}\left( {1 - \frac{3}{x}} \right)} \right] = - \infty \)

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( {{x^3} - 3x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {{x^3}\left( {1 - \frac{3}{x}} \right)} \right] = + \infty \)

Bảng biến thiên:

image

3. Đồ thị:

Giao điểm của đồ thị hàm số \(y = {x^3} - 3{x^2}\) với trục tung là (0; 0).

\({x^3} - 3{x^2} = 0 \Leftrightarrow {x^2}\left( {x - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 3\end{array} \right.\)

Giao điểm của đồ thị hàm số \(y = {x^3} - 3{x^2}\) với trục hoành là (0; 0); (3; 0)

Đồ thị hàm số có tâm đối xứng là điểm \(\left( {1; - 2} \right)\).

image

b) 1. Tập xác định của hàm số: \(\mathbb{R}\backslash \left\{ { - 2} \right\}\)

2. Sự biến thiên:

\(y’ = \frac{3}{{{{\left( {x + 2} \right)}^2}}} > 0\forall x \ne - 2\)

Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).

Hàm số không có cực trị.

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 1}}{{x + 2}} = 2;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x + 1}}{{x + 2}} = 2\). \(\mathop {\lim }\limits_{x \to - {2^ - }} y = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{2x + 1}}{{x + 2}} = + \infty ;\mathop {\lim }\limits_{x \to - {2^ + }} y = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{2x + 1}}{{x + 2}} = - \infty \).

Do đó, đồ thị hàm số nhận đường thẳng \(x = - 2\) làm tiệm cận đứng và đường thẳng \(y = 2\) làm tiệm cận ngang.

Bảng biến thiên:

image

3. Đồ thị: Giao điểm của đồ thị hàm số với trục tung là \(\left( {0;\frac{1}{2}} \right)\).

\(y = 0 \Leftrightarrow \frac{{2x + 1}}{{x + 2}} = 0 \Leftrightarrow x = \frac{{ - 1}}{2}\)

Giao điểm của đồ thị hàm số với trục hoành là \(\left( {\frac{{ - 1}}{2};0} \right)\).

Đồ thị hàm số nhận giao điểm \(I\left( { - 2;2} \right)\) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.

image

c) 1. Tập xác định của hàm số: \(\mathbb{R}\backslash \left\{ 1 \right\}\)

2. Sự biến thiên:

Ta có: \(y = \frac{{2{x^2} + x - 2}}{{x - 1}} = 2x + 3 + \frac{1}{{x - 1}}\)

\(y’ = 2 - \frac{1}{{{{\left( {x - 1} \right)}^2}}},y’ = 0 \Leftrightarrow x = \frac{{\sqrt 2 + 2}}{2}\) hoặc \(x = \frac{{ - \sqrt 2 + 2}}{2}\)

Trong khoảng \(\left( { - \infty ;\frac{{ - \sqrt 2 + 2}}{2}} \right)\) và \(\left( {\frac{{\sqrt 2 + 2}}{2}; + \infty } \right)\), \(y’ > 0\) nên hàm số đồng biến.

Trong khoảng \(\left( {\frac{{ - \sqrt 2 + 2}}{2};1} \right)\) và \(\left( {1;\frac{{\sqrt 2 + 2}}{2}} \right)\), \(y’ < 0\) nên hàm số nghịch biến.

Hàm số đạt cực đại tại \(x = \frac{{ - \sqrt 2 + 2}}{2}\), giá trị cực đại .

Hàm số đạt cực tiểu tại \(x = \frac{{2 + \sqrt 2 }}{2}\), giá trị cực đại \({y_{CT}} = 5 + 2\sqrt 2 \).

Giới hạn:

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{2{x^2} + x - 2}}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{2{x^2} + x - 2}}{{x - 1}} = - \infty \) \(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2{x^2} + x - 2}}{{x - 1}} = - \infty ;\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2{x^2} + x - 2}}{{x - 1}} = + \infty \)

\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {2x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {2x + 3 + \frac{1}{{x - 1}} - \left( {2x + 3} \right)} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{x - 1}} = 0\)

\(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {2x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( {2x + 3 + \frac{1}{{x - 1}} - \left( {2x + 3} \right)} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{x - 1}} = 0\)

Do đó, đồ thị hàm số nhận đường thẳng \(x = 1\) làm tiệm cận đứng và đường thẳng \(y = 2x + 3\) làm tiệm cận xiên.

Bảng biến thiên:

image

3. Đồ thị: Giao điểm của đồ thị hàm số với trục tung là \[\left( {0; - 2} \right).\]

\(\frac{{2{x^2} + x - 2}}{{x - 1}} = 0 \Leftrightarrow x = \frac{{ - 1 - \sqrt {17} }}{4}\) hoặc \(x = \frac{{ - 1 + \sqrt {17} }}{4}\)

Giao điểm của đồ thị hàm số với trục hoành là \(\left( {\frac{{ - 1 - \sqrt {17} }}{4};0} \right)\) và \(\left( {\frac{{ - 1 + \sqrt {17} }}{4};0} \right)\)

Đồ thị hàm số nhận giao điểm \[I\left( {1;5} \right)\] của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.

image

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Có thể bạn chưa biêt?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Lời chia sẻ Lớp 12

Lớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Hoc Sinh 247